## Power management

# Why a power-factor correction device is better suited to industrial applications

**Mohit Arora, Systems Engineer, Freescale Semiconductors, explains the reasons that make power-factor correction devices better suited to industrial applications.**

How often are homeowners approached by a salesperson at the doorstep selling a device that can go in a wall and supposedly save energy or reduce the monthly electricity bill substantially? The so-called "power-saver device" (known by different names) is nothing but power-factor correction (PFC) device that connects to the mains and improves power factor, and thus the apparent power measured by the meter. However, it's important to notice that a residential user's utilities bill is based on real power rather than apparent power, and thus none of these devices really reduce their monthly bills. In this article, I explain the different power types that an electricity meter measures, power factor, and power factors' implications on power measurement. Although a PFC device may be useful for industrial applications, the additional cost does not really justify this device to be used in residential applications, contrary to the claims.

**The basics: Watt (W) and Volt-amp (VA)**

Watts (W) and Volt-amps (VA) are often considered as interchangeable and equivalent units to measure power. This is far from true in a practical scenario.

*Power* by definition is the rate of work or energy flow.

Power = Energy/Time

*Instantaneous power* is defined as *(p)t = v(t) (i)t* where:*v (t)* = instantaneous voltage as function of time **t***i (t)* = instantaneous current as function of time **t**

For a simple alternating current (AC) circuit, *real (active) power* is defined as the average value of the instantaneous power over a complete AC cycle.

Real power *(W)* = average{*v(t) i(t)*}

Note that real power is measured in Watts (W) and represents the actual work done by an electric current or actual energy consumed by a load.

When a sinusoidal voltage source is connected to a resistor, current flows and the power is dissipated in the register. **Figure 1** shows the instantaneous power as a product of voltage and current with the following values:

_{RMS}= RMS value of the voltage = 1V

Vpp = Peak to peak voltage = 1.414V

I

_{RMS}= RMS value of the current = 1A

Ipp = Peak to peak current = 1.414A

R = Resistor across the voltage source = 1 Ohm

Click on image to enlarge. |

*Instantaneous power = Vpp Ipp*

Similarly instantaneous power at the negative peak of both voltage and current (Point "Y" in Figure 1) = -1.414V -1.414A = 2W. Note that average power across the sine wave would be 1W

Electrical systems usually have inductors and capacitors, which are referred to as reactive components. For the same Inductive load, current in an ideal inductor would lag exactly 90 degrees behind the applied voltage as shown in **Figure 2**. Between the two vertical lines shown in the figure, negative current multiplied by positive voltage would give a negative power. For a part of the cycle, negative power would mean energy would actually be transferred from the inductor (load) back to the source.

Click on image to enlarge. |

Ideal reactive components (where phase difference between the current and voltage is exactly 90 degrees) do not dissipate any energy, but they actually do draw currents and create voltage drops. This "imaginary power" is called *reactive power*. Its average value over a complete AC cycle is zero because the phase shift between voltage and current doesn't contribute to net transfer of energy (as shown in **Figure 2**).

Reactive power is measured in *Volt-amps-reactive (VAR)*. The combination of real (active) power and reactive power makes up *apparent (or total) power*, measured in *Volt-amps (VA)*.

**Understanding power factor:***Power factor (PF)* by definition is the ratio of real power to apparent power:

Power Factor (PF) = Real Power (Watts) Apparent Power (VA)

It is found that people often convert Watt to VA (Watts = VA), which is not true unless power factor of a device is 1.

**Figure 3** shows power triangle that shows relationship between real (active) power, reactive, and apparent (total) power, all represented in terms of vectors.

Also note that when both voltage and current are sinusoidal, power factor = Cos where is the angle between voltage and current phasors.

Click on image to enlarge. |

**Please login to post your comment - click here**

- Overcoming patient leakage current issues
- Conquering the 'kink' in sub-threshold power MOSFET behavior: A simple compact modeling approach
- Bridging the gap between speed and power in asynchronous SRAMs
- Product How-to: Ultra-low noise linear regulators for powering PLL/VCO and clocking ICs
- Sub-threshold design - A revolutionary approach to eliminating power
- Death to "half-power handsets"
- The benefits of the coupled inductor technology
- Product How-to: Power supply Black Box revolutionizes customer diagnostics
- Slash power SoC consumption in the interconnect
- LXI + PoE: Essential design considerations
- Understanding isolated DC/DC converter voltage regulation
- Triac triggering compliance: The basics of positive and negative supplies
- Demystifying ultra-low-power benchmarks for microcontrollers
- Power supply for mobile devices
- Power module redundancy

- First round-the-world solar plane flight prepares for take-off
- Are next generation EV batteries a step closer?
- Are power management researchers really 21st century alchemists?
- Overcoming patient leakage current issues
- Long life aluminium-air battery resolves rechargeable challenges
- Solar-powered radio chip monitors windows to save energy
- How to measure capacity versus bias voltage on MLCCs
- Conquering the 'kink' in sub-threshold power MOSFET behavior: A simple compact modeling approach
- Bamboo bike uses peddle power to recharge smartphones
- Hybrid fuel cell advance boosts power by 20 percent
- Apple Watch spurs wireless charging growth in 2015
- LED buck regulator with current-mode control simplifies compensation
- Product How-to: Ultra-low noise linear regulators for powering PLL/VCO and clocking ICs
- Improved dendrite formation control helps lithium batteries last longer
- Multi-crystalline silicon PV module claims power output world record

- Investigating Die attach Failure in IGBTs using Power Cycling Tests
- Power Systems Design eBook
- Wireless Power User Guide
- A Novel Approach to Industrial Rectifier Systems
- Smartphone SoC Power Efficiency - DVFS Capacitor Switching
- Power Modules: The New Super Power
- Digital Power Management Reduces Energy Costs While Improving System Performance