## Power management

# Why a power-factor correction device is better suited to industrial applications

**Mohit Arora, Systems Engineer, Freescale Semiconductors, explains the reasons that make power-factor correction devices better suited to industrial applications.**

How often are homeowners approached by a salesperson at the doorstep selling a device that can go in a wall and supposedly save energy or reduce the monthly electricity bill substantially? The so-called "power-saver device" (known by different names) is nothing but power-factor correction (PFC) device that connects to the mains and improves power factor, and thus the apparent power measured by the meter. However, it's important to notice that a residential user's utilities bill is based on real power rather than apparent power, and thus none of these devices really reduce their monthly bills. In this article, I explain the different power types that an electricity meter measures, power factor, and power factors' implications on power measurement. Although a PFC device may be useful for industrial applications, the additional cost does not really justify this device to be used in residential applications, contrary to the claims.

**The basics: Watt (W) and Volt-amp (VA)**

Watts (W) and Volt-amps (VA) are often considered as interchangeable and equivalent units to measure power. This is far from true in a practical scenario.

*Power* by definition is the rate of work or energy flow.

Power = Energy/Time

*Instantaneous power* is defined as *(p)t = v(t) (i)t* where:*v (t)* = instantaneous voltage as function of time **t***i (t)* = instantaneous current as function of time **t**

For a simple alternating current (AC) circuit, *real (active) power* is defined as the average value of the instantaneous power over a complete AC cycle.

Real power *(W)* = average{*v(t) i(t)*}

Note that real power is measured in Watts (W) and represents the actual work done by an electric current or actual energy consumed by a load.

When a sinusoidal voltage source is connected to a resistor, current flows and the power is dissipated in the register. **Figure 1** shows the instantaneous power as a product of voltage and current with the following values:

_{RMS}= RMS value of the voltage = 1V

Vpp = Peak to peak voltage = 1.414V

I

_{RMS}= RMS value of the current = 1A

Ipp = Peak to peak current = 1.414A

R = Resistor across the voltage source = 1 Ohm

Click on image to enlarge. |

*Instantaneous power = Vpp Ipp*

Similarly instantaneous power at the negative peak of both voltage and current (Point "Y" in Figure 1) = -1.414V -1.414A = 2W. Note that average power across the sine wave would be 1W

Electrical systems usually have inductors and capacitors, which are referred to as reactive components. For the same Inductive load, current in an ideal inductor would lag exactly 90 degrees behind the applied voltage as shown in **Figure 2**. Between the two vertical lines shown in the figure, negative current multiplied by positive voltage would give a negative power. For a part of the cycle, negative power would mean energy would actually be transferred from the inductor (load) back to the source.

Click on image to enlarge. |

Ideal reactive components (where phase difference between the current and voltage is exactly 90 degrees) do not dissipate any energy, but they actually do draw currents and create voltage drops. This "imaginary power" is called *reactive power*. Its average value over a complete AC cycle is zero because the phase shift between voltage and current doesn't contribute to net transfer of energy (as shown in **Figure 2**).

Reactive power is measured in *Volt-amps-reactive (VAR)*. The combination of real (active) power and reactive power makes up *apparent (or total) power*, measured in *Volt-amps (VA)*.

**Understanding power factor:***Power factor (PF)* by definition is the ratio of real power to apparent power:

Power Factor (PF) = Real Power (Watts) Apparent Power (VA)

It is found that people often convert Watt to VA (Watts = VA), which is not true unless power factor of a device is 1.

**Figure 3** shows power triangle that shows relationship between real (active) power, reactive, and apparent (total) power, all represented in terms of vectors.

Also note that when both voltage and current are sinusoidal, power factor = Cos where is the angle between voltage and current phasors.

Click on image to enlarge. |

**Please login to post your comment - click here**

- Examining high current and high power density demands on POL converters
- The advantages of an LED power supply over standard ITE power supplies
- Testing SATA DevSleep for today's power stingy SSDs
- Intuitive innovation in wireless power transfer, Part 1
- New demands on DC-link power capacitors
- Power management design for single-cell battery system
- WPT breaks all connections, Part 3
- Bias power made easy
- How to get higher efficiency at lower loads: A new LLC platform makes it possible
- Vampire power and the need to save energy little and often
- Real-time power GaN waveform monitoring
- WPT breaks all connections, Part 1
- Advantages of power blocks for high-current POLs
- Predictive energy balance control for PDN applications
- Data-acquisition: The key to a smart electrical grid

- Will home battery market entry give Tesla traction?
- How do lithium-ion batteries explode in real-time?
- New demands on DC-link power capacitors
- Cold Fusion: Still alive and kicking (But perhaps without the fusion)
- Infineon seeks buyer for Welsh wafer fab
- Fairchild cuts IGBT switching losses by 30 percent
- Single material battery is safer, simpler and more efficient
- Black silicon solar cells push efficiency record to 22.1 percent
- Single-cell 5-A battery-charger IC cuts battery-charge times 60 percent
- The advantages of an LED power supply over standard ITE power supplies
- Wireless charging gets universal antenna
- Digital signal controllers consume up to 80 percent less power
- Infineon acquisition strengthens position in global IPM market
- Boron-infused graphene helps quadruple performance of microsupercapacitor
- Intuitive innovation in wireless power transfer, Part 1

- Battery Management System Tutorial
- High Performance Portable DC Bench Power Supply: Save Money and Free Up Bench Real Estate by Building Your Own
- A Four-Quadrant DC/DC Switching Regulator Smoothly Transitions from Positive to Negative Output Voltages for FPGA and Other Applications
- Investigating Die attach Failure in IGBTs using Power Cycling Tests
- Power Systems Design eBook
- Wireless Power User Guide
- A Novel Approach to Industrial Rectifier Systems