Carbon films: The microchip power source for next generation IoT

February 12, 2016 // By Paul Buckley
Researchers from Drexel and Paul Sabatier University in France have developed a method for embedding a supercapacitor energy storage device in the silicon wafer of a microchip.

The international team of researchers led by Drexel University’s Yury Gogotsi, Ph.D. , and Patrice Simon, Ph.D., of Paul Sabatier University in Toulouse, France, have confirmed a process for making carbon films and micro-supercapacitors allows microchips and their power sources to become one and the same.

The discovery, which was reported in the journal Science, is the culmination of years of collaborative research by the team who initially created the carbide-derived carbon film material for microsupercapacitors and published the concept paper in Science in 2010. Since then, their goal has been to show that it is possible to physically couple the processing center of an electronic device - the microchip - with its energy source.

“This has taken us quite some time, but we set a lofty goal of not just making an energy storage device as small as a microchip - but actually making an energy storage device that is part of the microchip and to do it in a way that is easily integrated into current silicon chip manufacturing processes,” said Simon, who led the research under the aegis of the French research network on electrochemical energy storage (RS2E), a spin-off of Le Centre National de la Recherche Scientifique (CNRS) and France’s Ministry of Research. “With this achievement, the future is now wide open for chip and personal electronics manufacturers.”

The development confirms a belief that the group has held since the materials were first fabricated - that the films are versatile enough to be seamlessly integrated into the systems that power silicon-based microchips that run devices from your laptop to your smart watch.

The challenges that the group faced in the development of the material were questions about its compatibility, its mechanical stability and durability for use on flexible substrates. With these answered, it opens up a myriad of possibilities for carbon films to work their way into silicon chips - including building microscale batteries on a chip.

“The place where most people will eventually notice the impact of this development is in the size of their personal electronic devices, their smart phones, fitbits and watches,” said Gogotsi, Distinguished University and Trustee Chair Professor in the Department of Materials Science Engineering who directs the A.J. Drexel Nanomaterials Institute in Drexel’s College of Engineering. “On-chip energy storage is needed to create the Internet of Things - the network of all kinds of physical objects ranging from vehicles and buildings to our clothes embedded with electronics, sensors and network connectivity, which enables these objects to collect and exchange data. This work is an important step toward that future.”